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Faraday instability on viscous ferrofluids in a horizontal magnetic field: Oblique rolls
of arbitrary orientation
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A linear stability analysis of the free surface of a horizontally unbounded ferrofluid layer of arbitrary depth
subjected to vertical vibrations and a horizontal magnetic field is performed. A nonmonotonic dependence of
the stability threshold on the magnetic field is found at high frequencies of the vibrations. The reasons for the
decrease of the critical acceleration amplitude caused by a horizontal magnetic field are discussed. It is
revealed that the magnetic field can be used to select the first unstable pattern of Faraday waves. In particular,
a rhombic pattern as a superposition of two different oblique rolls can occur. A scaling law is presented which
maps all data into one graph for the tested range of viscosities, frequencies, magnetic fields, and layer thick-
nesses.
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I. INTRODUCTION

The Faraday instability denotes the parametric genera
of standing waves on the free surface of a fluid subjecte
vertical vibrations. The study of this phenomenon dates b
to the observations by Faraday in 1831@1#. The initially flat
free surface of the fluid becomes unstable at a certain in
sity of the vertical vibrations of the whole system. As a res
of the instability, a pattern of standing waves is formed at
fluid surface. The typical response is subharmonic, i.e.,
wave frequency is half the frequency of the excitation. T
harmonic response can be observed on a shallow fluid at
frequencies@2#. Faraday waves allow one to investigate sy
metry breaking phenomena in a spatially extended nonlin
system. Therefore they experienced a renewed interest i
cent years. A detailed experimental study of the various p
terns on a viscous fluid has been performed by Edwards
Fauve @3# who used a one-frequency as well as a tw
frequency forcing. Parallel rolls, hexagons, and a twelvef
quasipattern were observed. Though typical Faraday wa
are subharmonic, the twelvefold quasipattern appears to
harmonic in a certain region of parameters. Binkset al. have
shown experimentally that the depth of the layer@4# and the
excitation frequency@5# affect significantly the regions
where either rolls or hexagons or squares are observed
@6–9# it is revealed that a two-frequency excitation leads t
great variety of wave patterns. In particular, the obser
patterns were triangles@6#, superlattices formed by small an
large hexagons@7#, squares@6–9#, and a rhomboid pattern
@9#.

The comprehensive linear stability analysis of the Fara
instability on an arbitrarily deep layer of a viscous nonma
netic fluid has been performed by Kumar and Tuckerm
@10#. This analysis was tested experimentally in@11# and an
excellent agreement between the predicted and experim
data was found. Weizhong and Rongjue@12# extended the
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linear analysis@10# for the case of an arbitrary periodic ex
citation. In @2,13# the low frequency region is studied i
great detail. Bicritical points, where transitions from o
type of response to others occur, are predicted and exp
mentally confirmed in@2#. In @14,15# an analogy between th
Faraday instability and a periodically driven version of t
Rayleigh-Taylor instability is exploited. In@14# a scaling law
is suggested, which satisfactorily describes the behavio
the system in a wide range of parameters. Kumar@15# dis-
cusses the mechanism of the wave number selection in
Faraday instability on high-viscous fluids.

In order to solve the pattern selection problem for t
Faraday instability it is necessary to take into account n
linear interactions between different excited modes. The n
linear behavior of the system has been studied theoretic
in a great number of papers~see @16–20# and references
therein!. An amplitude equation for an infinitely deep laye
of a viscous fluid is derived by Chen and Vin˜als @19#. A good
agreement between the predicted frequencies for the tra
tion between regions of different symmetry@19# and the ex-
perimental observations@5# is found.

Magnetic fluids~or ferrofluids! are colloidal dispersions
of single domain nanoparticles in a carrier liquid. The attra
tiveness of ferrofluids stems from the combination of a n
mal liquid behavior with the sensitivity to magnetic field
This enables the use of magnetic fields to control the flow
the fluid, giving rise to a great variety of new phenome
and to numerous technical applications@21#.

One of the most interesting phenomena of pattern form
tion in ferrofluids is the Rosensweig instability@22#. At a
certain intensity of the normal magnetic field the initially fl
surface of a horizontal ferrofluid layer becomes unstab
Peaks appear at the fluid surface, which typically form
static hexagonal pattern at the final stage of the patte
forming process@23#. By including vertical vibrations to tha
setup, Müller @24# analyzed the Faraday instability on vis
cous ferrofluids subjected to a vertical magnetic field in
frame of a linear stability analysis. It has been found that
joint action of the two destabilizing factors leads to a de
of the Rosensweig instability. By an appropriate choice
the system parameters one can observe either a norm
©2002 The American Physical Society09-1
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V. V. MEKHONOSHIN AND ADRIAN LANGE PHYSICAL REVIEW E 65 061509
anomalous dispersion. The predictions of@24# were con-
firmed experimentally in@25#.

Parametric waves on the surface of a ferrofluid can
excited using a vertical@26# or a horizontal@27,28# alternat-
ing magnetic field. This phenomenon is called the magn
Faraday instability. In@26# the dispersion relation was inves
tigated experimentally and it displays two significant fe
tures. The response of the surface waves is harmonic
respect to the frequency of the magnetic field and the w
vector of the resulting rolls is parallel to the field, i.e., t
crests and troughs of the rolls are perpendicular to the fi
In @28# a supercritical transition from rolls to rectangles w
observed and explained by means of a weakly nonlin
analysis.

In the present paper the stability of the surface of a f
rofluid subjected to vertical vibrations and a static horizon
magnetic field is studied in a wide range of the system
rameters. The horizontal magnetic field tends to decrease
curvature of the ferrofluid surface along the direction of t
field @29#, i.e., it tends to stabilize the flat surface. On t
other hand, vertical vibrations tend to destabilize a flat s
face. Thus the aim of the linear stability analysis is to stu
the behavior of a ferrofluid subjected to two, in a certa
sense competing factors. It will be shown that the magn
field allows one to control the stability of the surface sign
cantly and to affect the symmetry of the linearly most u
stable pattern. This opportunity can be used in numer
technical applications, where magnetic fields tangentia
the fluid surface and perpendicular vibrations are typical

II. SYSTEM AND BASIC EQUATIONS

A dielectric, viscous, and incompressible magnetic flu
with constant densityr and permeabilitym r is considered.
The laterally infinite ferrofluid layer of arbitrary depthh is
subjected to a homogeneous dc horizontal magnetic field
harmonic vertical vibrations~Fig. 1!. The planez50 coin-
cides with the nondeformed surface of the ferrofluid. T
fluid layer is bounded from below by the bottom of the no
magnetic container and has a free surface described
z(t,x,y) with air above. A homogeneous magnetic fieldH0
5(H0,0,0) is applied along thex axis. Due to zero electrica
conductivity of the fluid, the static form of the Maxwe
equations is used for the strengthH and the inductionB of
the magnetic field in all three media

FIG. 1. A horizontally unbounded ferrofluid layer~2! is placed
in a nonmagnetic container~3! with air ~1! above. The system is
subjected to a horizontal magnetic fieldH0 and harmonic vertical
vibrationsa(t).
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div B( i )50, rot H( i )50, i 51,2,3, ~2.1!

where superscripts denote the different media: 1, air; 2, m
netic fluid; and 3, container. A linear relation between t
magnetization of the fluidM (2) and the strength of the mag
netic field inside is assumed,M (2)5m0(m r21)H(2).

The fluid motion is governed by the continuity equatio
and the Navier-Stokes equations

div v50, ~2.2a!

]v

]t
1~v grad!v52

1

r
gradp1nDv1g~ t !. ~2.2b!

Herev5(u,v,w) is the fluid velocity,p is the pressure, and
n is the kinematic viscosity of the fluid. The vertical vibra
tions add a periodic term to the gravity accelerationg0, i.e., a
modulated valueg(t)5@0,0,2g02a cos(vt)# appears in the
Navier-Stokes equations. Herea is the acceleration ampli
tude andv is the angular frequency of the vibrations. Th

components of the stress tensorTJ (2) read

Ti j
(2)5H 2p2m0E

0

H

MdH82m0

H2

2 J
3d i j 1HiBj1rn~] iv j1] jv i !. ~2.3!

The governing set of equations has to be supplemente
the boundary conditions. For the magnetic field the con
tions are the decay of all perturbations far from the ferroflu
(z→6`) and the continuity of the normal~tangential! com-
ponent of the induction~strength! of the magnetic field
across the air-fluid interface (z5z) and at the bottom of the
container (z52h),

H(1)5H0 at z→`, ~2.4a!

Bn
(1)5Bn

(2) , Ht
(1)5Ht

(2) at z5z, ~2.4b!

Bn
(2)5Bn

(3) , Ht
(2)5Ht

(3) at z52h, ~2.4c!

H(3)5H0 at z→2`. ~2.4d!

The subscriptsn and t denote the normal and tangenti
components of the vector.

The hydrodynamic equations are closed by the no-
condition at the bottom of the container,

v50 at z52h, ~2.5!

and the kinematic boundary condition at the free surface
the fluid

w5] tz1~v grad!z at z5z. ~2.6!

The equations for magnetic field and the fluid motion a
coupled by the continuity condition for the stress tens
across the air-fluid interface, which completes the statem
of the problem,
9-2



-

iz

r-

g

th
ith

uet

e
as
q.
re

ion
ns

ic

FARADAY INSTABILITY ON VISCOUS FERROFLUIDS . . . PHYSICAL REVIEW E 65 061509
nj H 2p(1)1p1m0E
0

H

MdH81m0

Mn
2

2 J
2rnni~] iv j1] jv i !

5sKnj . ~2.7!

Heres is the surface tension,K5div n is the surface curva
ture, p(1) is the atmospheric pressure above the fluid~as-
sumed to be constant!, andn is the unit vector normal to the
surface given by

n5
grad@z2z~ t,x,y!#

ugrad@z2z~ t,x,y!#u
. ~2.8!

III. LINEAR STABILITY ANALYSIS

Following the standard procedure@10,24#, the governing
equations and the boundary conditions have been linear
in the vicinity of the nonperturbed state

v50, z50, H( i )5H0 , i 51,2,3,

p05p(1)2
m0

2
M0H02g~ t !z,

whereM05(m r21)H0 andp0 is the pressure in the unpe
turbed state. The linearized governing equations for the sm
perturbations, which encompass the magnetic field stren
H1, the pressurep1, and a nonzero velocityv of the fluid,
read

m0m r div H1
( i )50, rotH1

( i )50, i 51,2,3, ~3.1a!

div v50, ~3.1b!

]v

]t
52

1

r
gradp11nDv. ~3.1c!

Here the linear relation between the induction and
strength of the magnetic field is used. At the first order w
respect to the perturbations, the boundary conditions are

H1
(1)50 at z→`, ~3.2a!

H1n
(1)5m rH1n

(2) , H1t
(1)5H1t

(2) at z50, ~3.2b!

m rH1n
(2)5H1n

(3) , H1t
(2)5H1t

(3) at z52h, ~3.2c!

H1
(3)50 at z→2`, ~3.2d!

v50 at z52h, ~3.2e!

w2] tz50 at z50, ~3.2f!

]zu1]xw50 at z50, ~3.2g!

]zv1]yw50 at z50, ~3.2h!
06150
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g~ t !z2p12m0M0H112rn]zw5sD'z at z50,
~3.2i!

whereD'5]xx1]yy . The stability of the flat surface with
respect to standing waves is analyzed by using the Floq
ansatz for the surface deformations and thez component of
the velocity

z~ t,x,y!5sin~kr !e(s1 iav)t (
n52`

`

zneinvt, ~3.3a!

w~ t,x,y,z!5sin~kr !e(s1 iav)t (
n52`

`

wn~z!einvt,

~3.3b!

wherek5(kx ,ky) is the two-dimensional wave vector,s is
the growth rate, anda is the parameter determining the typ
of the response. Fora50 the response is harmonic where
for a51/2 it is subharmonic. Expansions similar to E
~3.3b! are made for all other small perturbations and a
inserted into the linearized governing equations~3.1!. The
functions of the vertical coordinate in the Floquet expans
are given by linear combinations of the exponential functio
e6kz and e6qnz with qn

25k21@s1 i (a1n)v#/n and
Re(qn).0. The condition of reality forz(t,x,y) leads to the
equations@10#

z2n5zn* , a50, ~3.4a!

z2n5zn21* , a51/2. ~3.4b!

The boundary conditions~3.2! allow one to express all the
perturbed quantities in terms of the coefficientszn which
satisfy the equation

(
n52`

`

~Wnzn2azn212azn11!e[s1 i (a1n)v] t50, ~3.5!

where

Wn522F n2

k@qn coth~qnh!2k coth~kh!#

3S qn@4k41~k21qn
2!2# coth~kh! coth~qnh!

2k@4k2qn
21~k21qn

2!2#2
4qnk2~k21qn

2!

sinh~kh! sinh~qnh!
D

1g01
sk2

r
1

k~m r21!2L~kh!

rm0
S kxB0

k D 2G ~3.6!

and

L~kh!5
ekh~m r11!1e2kh~m r21!

ekh~m r11!22e2kh~m r21!2
. ~3.7!

Here B05m0H0 is the induction of the applied magnet
field.
9-3



in

s
t
lity

t

f

-
th
s

in
d
e

ve

e
n
-
-
t
s
it
c

tio
gu

nc

or
ue

o
th

ar-

de

n,

e-

e-

ber

am-

eld

V. V. MEKHONOSHIN AND ADRIAN LANGE PHYSICAL REVIEW E 65 061509
The essential differences of Eqs.~3.5!–~3.7! in compari-
son with the dispersion relation for the surface instability
a vertical magnetic field@24,30,31# are the following: First,
the term proportional toB0

2 has the same sign as the term
related to surface tension and gravity. This implies tha
horizontal magnetic field alone cannot induce any instabi
Second, in the same term the factorkx appears instead ofk in
the case of the normal magnetic field. This allows one
introduce the effective field

Beff5
~kB0!

k2
k5B0 cos~u!

k

k
, ~3.8!

whereu is the angle betweenk andB0. Hence, the influence
of a magnetic field with inductionB0 on a wave propagating
along an arbitrary directionk is equivalent to the influence o
a field with inductionBeff , which is parallel tok.

Equation~3.5! has to be satisfied for all times which im
plies that each term of the sum equals to zero. Using
relations betweenzn with positive and negative number
~3.4!, one gets the set of equations

W0z02az1* 2az150, a50, ~3.9a!

W0z02az0* 2az150, a51/2, ~3.9b!

Wnzn2azn212azn1150, n51, . . . ,̀ . ~3.9c!

A cutoff at n5N ~in the present workN5100) leads to a
self-consistent equation for the acceleration amplitudea
@19,18#,

a5uF~a,k,v,Beff ,n,s,r,m r !u, ~3.10!

whereF is a complex function expressed in terms of cont
ued fractions. Equation~3.10! can be solved numerically an
gives the dependence ofa on k at fixed parameters. Th
critical values of the acceleration amplitudeac and the wave
numberkc correspond to an absolute minimum of the cur
a(k) at zero growth rate (s50).

IV. RESULTS AND DISCUSSION

In the following the effective field is given in units of th
critical inductionBcR for the Rosensweig instability on a
infinitely deep layer of ferrofluid@22#. Figure 2 presents mar
ginal stability curves for a viscous ferrofluid at low fre
quency. The dependence of acceleration amplitude on
wave number fors50 divides the phase space into region
where the surface of the ferrofluid is stable or unstable w
respect to parametrically driven standing waves. The prin
pal data which can be extracted are the critical accelera
amplitude, the wave number, and the number of the ton
to which they belong. The number of a tongue, ~from left to
right! is the order of response: the basic wave freque
related to the,th tongue isV5,v/2. The odd and even
tongues are the regions, where either a subharmonic
harmonic instability develops. It can be seen that all tong
shift towards smaller wave numbers under the influence
an applied magnetic field. In the case presented in Fig. 2
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field also causes a transition from a subharmonic to a h
monic response.

The dependencies of the critical acceleration amplitu
and the critical wave number on theexcitation frequency f
5v/2p are presented in Fig. 3. In the high frequency regio
the instability is subharmonic, i.e.,,51. In the small fre-
quency region bicritical points appear, which is why the d

FIG. 2. Neutral stability curves for the excitation frequencyf
510 Hz and layer depthh52 mm. Dashed~solid! lines corre-
spond toBeff50 (BcR). Filled and unfilled tongues represent r
gions of subharmonic and harmonic responses.ac and kc (ac8 and
kc8) are the critical acceleration amplitude and critical wave num
for Beff5BcR (Beff50). The parameters of the fluid aren
51024 m2/s, s50.0265 N/m, r51020 kg/m3, m r51.85, and
BcR517.28 mT.

FIG. 3. Frequency dependencies of the critical acceleration
plitude ac ~a! and the critical wave numberkc ~b! for h52 mm.
Insets: low-frequency behavior of the quantities. The effective fi
is Beff51.5BcR ~curveA), BcR (B), 0.5BcR (C), 0 (D). The fluid
parameters arem r51.85, s50.0265 N/m,n55.8831026 m2/s,
r51020 kg/m3, andBcR517.28 mT.
9-4
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FARADAY INSTABILITY ON VISCOUS FERROFLUIDS . . . PHYSICAL REVIEW E 65 061509
pendence ofac( f ) is not smooth and the dependence
kc( f ) is discontinuous~see the insets in Fig. 3!. Bicritical
points are those points in the parameter space where the
solute minima ofa(k) is equal to the local minima of two
neighboring tongues. In the zero field case, for instance, s
an overlap happens between the first subharmonic ton
(,51) and the first harmonic tongue (,52) at f bc,1
.1.86 Hz. For frequencies belowf bc,1, the tongue of sec-
ond order gives the critical acceleration until the next bicr
cal point at f bc,2.1.55 Hz. Belowf bc,2 the tongue of third
order gives there the lowest threshold until the third bicriti
point and so on. Thus with decreasing frequency subseq
transitions from a tongue of the order, to a tongue of the
order,11 occur.

It is seen in the inset in Fig. 3~b! that the magnetic field
shifts the bicritical points. If the fluid viscosity is low~as in
Fig. 3!, then the magnetic field decreases the frequencie
the transitions. For higher viscosities, e.g.,n51024 m2/s,
the bicritical points are shifted towards higher frequenci
This is exemplarily shown in Fig. 4 for the frequency of th
first bicritical point, f bc,1, for a high-viscous fluid~curve 1!
and a low-viscous fluid~curve 2!. For frequencies above~be-
low! the curves the response of the system is subharm
~harmonic!. Thus for a high-viscous fluid and an excitatio
frequency off 510 Hz at zero applied field a subharmon
response (V5v/2) is expected, whereas atBeff5BcR a har-
monic response (V5v) precedes. For ordinary~nonmag-
netic! fluids bicritical points were also found in the case
both low-viscous fluids@2# and high-viscous fluids@13#.

A feature of the dependence ofac( f ) @Fig. 3~a!# is the
appearance of a pronounced minimum for all tested fields
explain this behavior, one has to recall that viscous damp
is the reason for the finite~nonzero! value of the critical
acceleration amplitude. The damping occurs due to
stresses in the bottom layer and in the bulk fluid. The dim
sionless quantityd5kch can be used to determine which pa
of the damping is predominant. For a shallow fluid layer t
inequalityd&1 holds and therefore the damping in the b
tom layer is predominant~first regime!. For a deep layer
where the relationd@1 is fulfilled, the damping in the bot
tom layer is of no importance and the damping in the b
fluid is predominant~second regime!.

FIG. 4. Frequency of the first bicritical pointf bc,1 versus the
effective magnetic induction. For a high-viscous fluid (n
51024 m2/s, curve 1! an increasing induction increasesf bc,1,
whereas for a low-viscous fluid (n55.8831026 m2/s, curve 2!
f bc,1 is decreasing.
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Thefirst regimeoccurs at the low frequency region in Fig
3, wherekc&500 m21. Inside this region, as the frequenc
increases the effective depthd of the fluid is increasing, too
Therefore the viscous stress in the bottom layer is weaken
and consequently the critical acceleration amplitude
creases. Thesecond damping regimeis typical for waves
with kc above 500 m21. Since dissipation in the bulk fluid is
proportional tokc

2 @32#, the damping becomes stronger and
a result the critical acceleration amplitude increases with
quency. The transition from the first to the second damp
regime leads to the nonmonotonic dependence of the cri
acceleration amplitude on the excitation frequency.

The most pronounced effect caused by themagnetic field
is the decrease of the critical wave number@cf. curvesD –A
in Fig. 3~b!# as already observed in@29#. The reduction of the
critical wave number affects the critical acceleration amp
tude. This influence is different at low and high frequenc
due to the following reason. The decrease ofkc results in~i!
the reduction of the effective fluid depthd, which intensifies
the stress in the bottom layer and~ii ! the weakening of the
dissipation in the bulk fluid. Therefore in the case of the fi
damping regime the viscous dissipation is intensifie
whereas in the case of the second regime it is reduced by
magnetic field.

In the low frequencyregion (d5kch&1), the first damp-
ing regime occurs independent of the magnetic field. The
fore the critical acceleration amplitude increases with
growth of the effective field.

At high frequenciesthe dependence of the critical acce
eration amplitude on the effective field is more intricate.
Fig. 5~a! the dependence ofac(Beff) is presented for a fre-
quencyf 5100 Hz. It is seen that for an infinitely deep flui
the critical acceleration amplitude decreases monoton
with the increase of the magnetic field. In the case of a fin
depth of the layer, there are two different forms of the d
pendence ofac on Beff . In the case ofh>1.14 mm a mini-
mum in the critical acceleration amplitude is observed.
implies that a moderate magnetic field lowers the thresh
value of the acceleration amplitude whereas a strong m
netic field stabilizes the surface, i.e., the critical accelerat
amplitude is increasing. With the decrease of the layer de
@from curve D to A in Fig. 5~a!#, the observed minimum
shifts to the lower fields and becomes less pronounced
h<1.13 mm the critical acceleration amplitude monotonic
increases with the effective field.

To explain these qualitative changes in the dependenc
ac(Beff) it is useful to considerd(Beff) @see Fig. 5~b!#. The
analysis shows that in the regiond@1 ~the second damping
regime! the decrease of the critical wave number caused
the magnetic field leads to a weakening of the viscous da
ing. Therefore the critical acceleration amplitude is decre
ing with the increase of the field until the effective depthd of
the fluid becomes of the order of unity. A further decrease
d caused by the magnetic field increases the viscous dam
in the bottom layer and consequently the critical accelera
amplitude. Thus, the transition from the second damping
gime to the first one results in the nonmonotonic depende
of ac(Beff) @Fig. 5~a!#. The effective field, where the trans
tion occurs, is decreasing with decrease ofh, and in the case
9-5
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V. V. MEKHONOSHIN AND ADRIAN LANGE PHYSICAL REVIEW E 65 061509
of a very shallow fluid~here, h<1.13 mm), the second
damping regime is not observed at all.

The nonmonotonic dependence ofac(Beff) allows one to
select the type of the linearly most unstable pattern~corre-
sponding to a minimalac) by applying a horizontal magneti
field. When the inductionB0 of the applied field is smalle
than Beff* @ac(Beff) is minimal at Beff* # Faraday waves with
kuuB0 are favorable. In this caseBeff5B0 @see Eq.~3.8!#, i.e.,
Beff has a maximal possible value at givenB0. It implies that
the first unstable pattern are rolls perpendicular to the m
netic field. If B0>Beff* then the angle between the favorab
wave vector of perturbation and the applied magnetic fi
satisfies the relation cosu56Beff* /B0. Thus, forB0.Beff* Þ0
rolls with an angle1u or an angle2u or a rhombic pattern
as a superposition of both is most probable. If the layer de
is small enoughBeff* becomes zero@see curveA in Fig. 5~a!#.
That is equivalent to cosu50, i.e., rolls parallel to the mag
netic field are expected.

The parametrical generation of surface waves by a h
zontal alternating magnetic field was observed in@27,28#. In
these studies the driving force is the magnetic field and
anisotropic. Only perturbations with a wave vector paralle
the field can be unstable in the linear approximation. The
fore the first unstable pattern observed in the experime
were always rolls perpendicular to the field. In@28# a super-
critical transition was observed from rolls to a rectangu
pattern. This transition is caused by nonlinear interaction
the different modes. In the present study there is no an

FIG. 5. Critical acceleration amplitudeac ~a! and the dimen-
sionless depthd5kch of the fluid ~b! versus the induction of mag
netic field for f 5100 Hz. The layer depth is 1 mm~curveA), 1.5
mm (B), 2 mm (C), 5 mm (D), and the curve~E! is obtained for an
infinitely deep layer. The fluid parameters are those of Fig. 3.
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tropic driving and therefore Faraday waves along an arbitr
direction can be excited. As a consequence, different patt
can be generated~rolls along an arbitrary direction or a
rhombic pattern as discussed above!.

In the case oflow viscositythe obtained results for the
critical acceleration amplitude are in the very good agr
ment with an approximation suggested by Mu¨ller et al. @Eq.
~9! in @2# and Eq.~4.1! in @24# #. It should be noted that the
influence of anormalmagnetic field~studied in@24,26#! and
a horizontal field ~studied in the present paper! on Faraday
waves are different. The normal magnetic field increases
critical wave number of the Faraday waves@26#, whereas the
horizontal magnetic field decreases the wave number. T
the sensitivity of ferrofluids to magnetic fields allows on
both to increase and to decrease the critical wave numbe
this way the relative importance of the stress in the bott
layer and the dissipation in the bulk fluid can be chang
Therefore magnetic fields are a convenient way to control
stability of the surface.

The Faraday instability on nonmagnetic fluids withhigh
viscosityhas been investigated in@14#. The authors suggest
scale for the acceleration based on an analogy between
Faraday instability and a periodically driven version of t
Rayleigh-Taylor instability. They observe a data collapse
the range of the dissipation parameter (d/h)2 from 0.1 to 0.3,
whered5An/v is the dissipative length scale. In this param
eter range our results are in a good agreement with the
gested scaling law. However, at low frequencies the sca

FIG. 6. Scaled critical acceleration amplitude versus the dim
sionless depth of the layer. Data are plotted for seven different
with various combinations of the fluid viscosity, excitation fr
quency, effective field, and the layer thickness~see Table I!. The
remaining parameters are those of Fig. 3.

TABLE I. Sets of the parameters for data plotted in Fig. 6.

Set n (m2/s) f ~Hz! Beff (BcR) h ~mm! Symbol

1 5.8831026 5 1 0.5–600 1

2 1023 10 0 5–100 ¹

3 1024 100 0 1–100 h

4 5.8831026 100 0–3 2 n

5 5.8831026 1–100 1 5 v

6 1023 5–100 1 2 x

7 1026–1023 48 1 2 L
9-6
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behavior suggested in@14# strongly underestimatesac . Ad-
ditionally, the remaining parameters neglected in@14# be-
come essential atkch&1. Therefore, the scaling propagate
in @14# is of limited use for ferrofluids in magnetic fields.

The aim now is to reveal ascaling lawfor the threshold
values of the Faraday instability. The behavior of the criti
acceleration amplitude as a function of the parameters of
system is determined by the dimensionless depthd of the
fluid ~see Figs. 3 and 5!. Therefore, it is natural to look for a
scaling law of the formāc5āc(d), where āc is the scaled
acceleration. Ash→` the required function should approac
an asymptotic value. Thus, the appropriate scale for the
celeration amplitude is the valueac,` of the critical accelera-
tion for an infinitely deep fluid. The quantitykcVn is a rea-
sonable estimation forac,` @14#. Introducing this scale for
the acceleration amplitudeāc5ac /(nVkc), it is possible to
map all the above presented dependencies in a single pl
it has been done in Fig. 6.

Figure 6 presents the dimensionless amplitude as a f
tion of the effective depthd5kch of the fluid. The latter can
be varied by means of changing the physical depth of
layer ~pluses, down triangles, and squares in Fig. 6!, varying
the applied magnetic field~up triangles!, excitation fre-
quency~left and right triangles!, and the viscosity of the fluid
~diamonds!. It is seen that for a wide range of parameters
dependencies ofāc related to different fluids and varyin
parameters are in a rather good agreement with each o
The only deviation from the common behavior appears fo
low frequency~plusses! at intermediated. For d up to unity
the dimensionless acceleration amplitude can be reason
approximated byāc'21d22.6 ~solid line in Fig. 6!. For d
r,

ett

lui

e
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@1 an estimationāc,`'7 approximates the exact resul
with a maximal error of about 12%. It is worth noting th
the dependencies of the critical acceleration amplitude on
surface tension and the fluid density follow the same co
mon behavior as shown in Fig. 6.

V. CONCLUSION

The linear analysis of the Faraday instability on a visco
ferrofluid subjected to a horizontal magnetic field has be
performed. A horizontally unbounded ferrofluid layer of
finite depth has been considered. The dependencies o
critical acceleration amplitudeac and the critical wave vec-
tor on the excitation frequencyf and the inductionBeff of the
magnetic field have been obtained for different depths of
layer in a wide range of fluid viscosities. The regions ha
been found, where the viscous stress either in the bot
layer ~the first regime! or in the bulk fluid~second regime!
are predominant. A transition from the second damping
gime to the first one can be caused by decreasing the ex
tion frequency or by applying a horizontal magnetic fie
The transition results in the nonmonotonic dependencie
ac( f ) and ac(Beff). It is shown that one can select the fir
unstable pattern of Faraday waves by the appropriate ch
of the depth of the ferrofluid and the induction of the ma
netic field. A scaling law is suggested, which describes
behavior of the system in a wide range of the system par
eters.
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