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Faraday instability on viscous ferrofluids in a horizontal magnetic field: Oblique rolls
of arbitrary orientation
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A linear stability analysis of the free surface of a horizontally unbounded ferrofluid layer of arbitrary depth
subjected to vertical vibrations and a horizontal magnetic field is performed. A nonmonotonic dependence of
the stability threshold on the magnetic field is found at high frequencies of the vibrations. The reasons for the
decrease of the critical acceleration amplitude caused by a horizontal magnetic field are discussed. It is
revealed that the magnetic field can be used to select the first unstable pattern of Faraday waves. In particular,
a rhombic pattern as a superposition of two different oblique rolls can occur. A scaling law is presented which
maps all data into one graph for the tested range of viscosities, frequencies, magnetic fields, and layer thick-
nesses.
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[. INTRODUCTION linear analysi§ 10] for the case of an arbitrary periodic ex-
citation. In [2,13] the low frequency region is studied in
The Faraday instability denotes the parametric generatiogreat detail. Bicritical points, where transitions from one
of standing waves on the free surface of a fluid subjected ttype of response to others occur, are predicted and experi-
vertical vibrations. The study of this phenomenon dates backientally confirmed iri2]. In [14,15 an analogy between the
to the observations by Faraday in 183]. The initially flat ~ Faraday instability and a periodically driven version of the
free surface of the fluid becomes unstable at a certain interRayleigh-Taylor instability is exploited. IfiL4] a scaling law
sity of the vertical vibrations of the whole system. As a resultiS suggested, which satisfactorily describes the behavior of

of the instability, a pattern of standing waves is formed at théh® systém in a wide range of parameters. Kufi& dis-
fluid surface. The typical response is subharmonic, i.e., th&USSes the mechanism of the wave number selection in the

wave frequency is half the frequency of the excitation. TheFaraday instability on high-viscous ﬂUid_S'
In order to solve the pattern selection problem for the

harmonic response can be observed on a shallow fluid at lo : S .
fre uencie$2]p Faradav waves allow one to investigate s m_\‘yaraday instability it is necessary to take into account non-
d ’ Y 9 y linear interactions between different excited modes. The non-

metry breaking phenomena in a spatially extended nonllneq[near behavior of the system has been studied theoretically

system. Therefore they experienced a renewed interest in e a great number of papersee[16—20 and references

cent years. A detalled. experimental study of the various patt'hereir). An amplitude equation for an infinitely deep layer
terns on a viscous fluid has been performed by Edwards ang 5 viscous fluid is derived by Chen and Wis[19]. A good
Fauve [3] who used a one-frequency as well as a two-ggreement between the predicted frequencies for the transi-
frequency forcing. Parallel rolls, hexagons, and a twelvefoldjgn, petween regions of different symmefi49] and the ex-
guasipattern were observed. Though typical Faraday wav@serimental observatior$] is found.
are subharmonic, the twelvefold quasipattern appears to be Mmagnetic fluids(or ferrofluid$ are colloidal dispersions
harmonic in a certain region of parameters. Bieksl. have  of single domain nanoparticles in a carrier liquid. The attrac-
shown experimentally that the depth of the laj#fand the tiveness of ferrofluids stems from the combination of a nor-
excitation frequency[5] affect significantly the regions mal liquid behavior with the sensitivity to magnetic fields.
where either rolls or hexagons or squares are observed. [This enables the use of magnetic fields to control the flow of
[6-9] it is revealed that a two-frequency excitation leads to athe fluid, giving rise to a great variety of new phenomena
great variety of wave patterns. In particular, the observednd to numerous technical applicatidr2q].
patterns were triangld§], superlattices formed by smalland ~ One of the most interesting phenomena of pattern forma-
large hexagon$7], square§6—9|, and a rhomboid pattern tion in ferrofluids is the Rosensweig instabilif22]. At a
[9]. certain intensity of the normal magnetic field the initially flat
The comprehensive linear stability analysis of the Faradagurface of a horizontal ferrofluid layer becomes unstable.
instability on an arbitrarily deep layer of a viscous nonmag-Peaks appear at the fluid surface, which typically form a
netic fluid has been performed by Kumar and Tuckermarstatic hexagonal pattern at the final stage of the pattern-
[10]. This analysis was tested experimentallyf1i] and an  forming proces$23]. By including vertical vibrations to that
excellent agreement between the predicted and experimentsétup, Muier [24] analyzed the Faraday instability on vis-
data was found. Weizhong and Rongju2] extended the cous ferrofluids subjected to a vertical magnetic field in the
frame of a linear stability analysis. It has been found that the
joint action of the two destabilizing factors leads to a delay
*Email address: Adrian.Lange@physik.uni-magdeburg.de; of the Rosensweig instability. By an appropriate choice of
http://itp.nat.uni-magdeburg.deadlange the system parameters one can observe either a normal or
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BT z (1) div BY=0, rot HD=0, i=1,2,3, (2.1
0 Ctxy)

\ e where superscripts denote the different media: 1, air; 2, mag-
I XA NS N Ay netic fluid; and 3, container. A linear relation between the

magnetization of the fluid1® and the strength of the mag-
a() netic field inside is assume] ®= o, —1)H®.
The fluid motion is governed by the continuity equation
and the Navier-Stokes equations

FIG. 1. A horizontally unbounded ferrofluid lay€2) is placed div v=0, (2.2a
in a nonmagnetic containéB) with air (1) above. The system is
subjected to a horizontal magnetic fidith and harmonic vertical

v 1
vibrationsa(t). = +(v gradv=— ;gradp+ vAv+g(t). (2.2b

anomalous dispersion. The predictions [@#] were con-  Herev=(u,0,w) is the fluid velocity,p is the pressure, and
firmed experimentally in25]. _ v is the kinematic viscosity of the fluid. The vertical vibra-
Parametric waves on the surface of a ferrofluid can bgjong add a periodic term to the gravity acceleratigni.e., a
excited using a verticdP6] or a horizonta[27,28 alternat- 1, qulated valugy(t) =[0,0— go— a cos(t)] appears in the
ing magnetic field. This phenomenon is called the magnetiqyayier-Stokes equations. Heeeis the acceleration ampli-

Faraday instability. 1126] the dispersion relation was inves- {,de ande is the angular frequency of the vibrations. The
tigated experimentally and it displays two significant fea-

tures. The response of the surface waves is harmonic wit
respect to the frequency of the magnetic field and the wave H 2
vector of the resulting rolls is parallel to the field, i.e., the Ti(jZ):{ —P—Mof MdH' — o=
crests and troughs of the rolls are perpendicular to the field. 0 2
In [28] a supercritical transition from rolls to rectangles was
observed and explained by means of a weakly nonlinear

analysis. : .
In the present paper the stability of the surface of a fer- The governing set of equations has to be supplemented by

the boundary conditions. For the magnetic field the condi-

ﬁggglr?efizt?ii%eg t;:;gg?avébﬁgznfaigg ifs:ﬁgcsggtrgrgngzlgions are the decay of all perturbations far from the ferrofluid
—+ 1 I 1 -
rameters. The horizontal magnetic field tends to decrease t & =2°) and the continuity of the normalangential com

. L ponent of the induction(strength of the magnetic field
curvature of the ferrofluid surface along the direction of the Lo
field [29], i.e., it tends to stabilize the flat surface. On the 8¢T0SS the air-fluid interface€ {) and at the bottom of the

other hand, vertical vibrations tend to destabilize a flat surconainer ¢=—hj,

face. Thus the aim of the linear stability analysis is to study HO=H at z—oo (2.43
the behavior of a ferrofluid subjected to two, in a certain 0 ' '
sense competing factors. It will be shown that the magnetic
field allows one to control the stability of the surface signifi-

cantly and to affect the symmetry of the linearly most un-

stable pattern. This opportunity can be used in numerous
technical applications, where magnetic fields tangential to 3)
the fluid surface and perpendicular vibrations are typical. H¥Y=H, at z—-—o. (2.49

fomponents of the stress tenddP) read

X(sij+HiBj+pV(aivj+ﬁjUi)- (23)

BW=B® HW=H® at z=¢,  (2.4b

B@=B®, H®=H® at z=-h, (240

The subscriptsn and = denote the normal and tangential
Il. SYSTEM AND BASIC EQUATIONS components of the vector.

. S . ) i _ . The hydrodynamic equations are closed by the no-slip
A dielectric, viscous, and incompressible magnetic fluidegndition at the bottom of the container

with constant density and permeabilityu, is considered.

The laterally infinite ferrofluid layer of arbitrary depthis v=0 atz=-—h, (2.5
subjected to a homogeneous dc horizontal magnetic field and

harmonic vertical vibrationgFig. 1). The planez=0 coin-  and the kinematic boundary condition at the free surface of
cides with the nondeformed surface of the ferrofluid. Thethe fluid

fluid layer is bounded from below by the bottom of the non-

magnetic container and has a free surface described by w=4d,{+(v grad{ at z=¢{. (2.6)
£(t,x,y) with air above. A homogeneous magnetic fiéld

=(Hy,0,0) is applied along the axis. Due to zero electrical The equations for magnetic field and the fluid motion are
conductivity of the fluid, the static form of the Maxwell coupled by the continuity condition for the stress tensor
equations is used for the strendgthand the inductiorB of  across the air-fluid interface, which completes the statement
the magnetic field in all three media of the problem,
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2

H M g(t)—p1— puoMoH 1+ 2pvd,w=0cA, { at z=0,
nj{—p(1)+p+,uoj MdH’+,u07n romoor z L
0

(3.2))

where A | = dy,+dy,. The stability of the flat surface with
respect to standing waves is analyzed by using the Floquet
=oKn;. (2.7 ansatz for the surface deformations and zreomponent of

the velocity

—pvni(&ivj—f—ajvi)

Here o is the surface tensiolk =div n is the surface curva-
ture, p*) is the atmospheric pressure above the fi(dd-
sumed to be constantndn is the unit vector normal to the
surface given by

{(txy)=sin(kr)etieat 3 g enel (3.39

[

o grad z— £(t,x,y)] 2.8 w(t,x,y,2)=sin(kr)es et 3w (7)ot
lgrad z— ¢(t,x,y)]]° ' n= 3.3
ll. LINEAR STABILITY ANALYSIS wherek=(ky,k,) is the two-dimensional wave vecta,is

_ ) the growth rate, and is the parameter determining the type
Following the standard proceduf#0,24], the governing  of the response. Far=0 the response is harmonic whereas
equations and the boundary conditions have been linearizgdy »=1/2 it is subharmonic. Expansions similar to Eq.
in the vicinity of the nonperturbed state (3.3p are made for all other small perturbations and are
inserted into the linearized governing equatidBsl). The

v=0, ¢=0, HU=H,, =123, functions of the vertical coordinate in the Floquet expansion
are given by linear combinations of the exponential functions
po=pH— @MoHo—g(t)z, e and e*Un? with qﬁ=k2_+[s+i(a+ n)w]/v and
Re(q,)>0. The condition of reality fo£(t,x,y) leads to the
_ _ equationd 10]
whereMy=(u,—1)Hy andpg is the pressure in the unper-
turbed state. The linearized governing equations for the small (n=0h, a=0, (3.439
perturbations, which encompass the magnetic field strength
H4, the pressure,, and a nonzero velocity of the fluid, {n=0h 1, a=1/2. (3.4b
read
The boundary condition§3.2) allow one to express all the
wory divH{?=0, rotH{?=0, i=1,2,3, (3.1a perturbed quantities in terms of the coefficiedts which
satisfy the equation
divv=0, (3.1b -
N 1 z (ann_agn—l_a§n+1)e[s+i(a+n)w]t=0a (35)
— =— —gradp; + vAv. (3.19 "~
ot p
where

Here the linear relation between the induction and the
strength of the magnetic field is used. At the first order with \y — _2{
respect to the perturbations, the boundary conditions are

V2

k[ g, coth(g,h) —k coth(kh) ]

HV=0 at z—o, (3.29 X | qn[4k*+ (k*+g?)?] coth(kh) coth(g,h)
HO= 0 HR, HE=H® atz=0, (3.2 2 2 491+ o)
2 (3 2 (3 K4k + (K5 00)°) = ey sinfq,h)
:U“ng_n):Hgn)- H(l,)=H(17) at z=—h, (3.209 n
ak?  k(u,—1)2A(kh) (kXBO> 2}
(= —~ +got — + 3.6
H®=0 atz——o, (3.20 9ot~ 1o K (3.6
v=0 atz=-h, (328 and
w—a,=0 atz=0, (3.2) e +1)+e N(u,—1)
Alkh)=— 2_ .—kh 2 3.7
d,u+ad,w=0 at z=0, (3.29

Here By= ugHg is the induction of the applied magnetic
dp+dw=0 atz=0, (3.2h field.
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The essential differences of Eq8.5—(3.7) in compari-
son with the dispersion relation for the surface instability in
a vertical magnetic field24,30,3] are the following: First,
the term proportional t(B(Z) has the same sign as the terms
related to surface tension and gravity. This implies that a o

150 |

. L . . " “ a
horizontal magnetic field alone cannot induce any instability. g
Second, in the same term the fackQrappears instead &fin S 100
the case of the normal magnetic field. This allows one to )
introduce the effective field a,
kB k .
Beff:%k:Bo codd) . (3.8 %00 300 500 700
k k™)

where# is the angle betweek andB,. Hence, the influence
of a magnetic field with inductioB, on a wave propagating
along an arbitrary directiok is equivalent to the influence of
a field with inductionB.g, which is parallel tok.
Equation(3.5) has to be satisfied for all times which im-

FIG. 2. Neutral stability curves for the excitation frequerfcy
=10 Hz and layer deptith=2 mm. Dashedsolid) lines corre-
spond toBgs=0 (B.g). Filled and unfilled tongues represent re-
gions of subharmonic and harmonic responsgsandk, (a; and
k;) are the critical acceleration amplitude and critical wave number

plies that each term of the sum equals to zero. Using théor Bgs=B.r (Be=0). The parameters of the fluid are
relations between;,, with positive and negative numbers =10"* m?s, ¢=0.0265 N/m, p=1020 kg/n¥, u,=1.85, and

(3.4), one gets the set of equations Bcr=17.28 mT.
Wofo—ali—af1=0, a=0, (399 field also causes a transition from a subharmonic to a har-
. monic response.
Wolo—adp —af;=0, a=1/2, (3.9 The dependencies of the critical acceleration amplitude
and the critical wave number on tlexcitation frequency f
Wyin—al,-1—aln:1=0, n=1,...0°. (3.90

= w/27 are presented in Fig. 3. In the high frequency region,
the instability is subharmonic, i.e,=1. In the small fre-

A cutoff atn=N (in the present worlN=100) leads to a quency region bicritical points appear, which is why the de-

self-consistent equation for the acceleration amplitede
[19,18,

(3.10

whereF is a complex function expressed in terms of contin-
ued fractions. Equatio(8.10 can be solved numerically and
gives the dependence af on k at fixed parameters. The
critical values of the acceleration amplitudgand the wave
numberk, correspond to an absolute minimum of the curve
a(k) at zero growth rateg=0).

a=|F(a,koBeg,v,0.p,1r)],

0 20 40 60 80 100
IV. RESULTS AND DISCUSSION 1 (Hz)
In the following the effective field is given in units of the 5 =0
critical inductionB_g for the Rosensweig instability on an 1500 T
infinitely deep layer of ferrofluid22]. Figure 2 presents mar- Z
ginal stability curves for a viscous ferrofluid at low fre- 1000 A
guency. The dependence of acceleration amplitude on the =
wave number fos=0 divides the phase space into regions, -
where the surface of the ferrofluid is stable or unstable with 500
respect to parametrically driven standing waves. The princi- (b)
pal data which can be extracted are the critical acceleration 0
amplitude, the wave number, and the number of the tongue 0 20 4(}(HZ;50 80 100

to which they belong. The number of a tonguéfrom left to
right) is the order of response: the basic wave frequency pig. 3. Frequency dependencies of the critical acceleration am-
related to thefth tongue isQ2={fw/2. The odd and even pjitude a, (a) and the critical wave numbeék, (b) for h=2 mm.
tongues are the regions, where either a subharmonic or |gsets: low-frequency behavior of the quantities. The effective field
harmonic instability develops. It can be seen that all tongues B 4=1.58.x (curve A), B.g (B), 0.5 (C), 0 (D). The fluid
shift towards smaller wave numbers under the influence oparameters arg,=1.85, 0=0.0265 N/m,»=5.88<10"% m%s,

an applied magnetic field. In the case presented in Fig. 2 the=1020 kg/ni, andB.g=17.28 mT.
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1 : Thefirst regimeoccurs at the low frequency region in Fig.

3, wherek, =500 m !. Inside this region, as the frequency
increases the effective depdhof the fluid is increasing, too.
Therefore the viscous stress in the bottom layer is weakening
and consequently the critical acceleration amplitude de-
creases. Thesecond damping regimis typical for waves
with k. above 500 m?. Since dissipation in the bulk fluid is
proportional td(ﬁ [32], the damping becomes stronger and as
a result the critical acceleration amplitude increases with fre-

frox (HZ)

1 0 0.5 1 15 qguency. The transition from the first to the second damping
B, /B, regime leads to the nonmonotonic dependence of the critical
acceleration amplitude on the excitation frequency.
FIG. 4. Frequency of the first bicritical pomtoc,l versus the The most pronounced effect caused by mhmnetic field
effective _magnetic induction. For a high-viscous fluid’ (s the decrease of the critical wave numpefr curvesD—A
=10"* m?s, curve 1 an increasing induction increasdg;, i Fig. 3(b)] as already observed j&9]. The reduction of the

whereas for a low-viscous fluidvE5.88x 1076 m?/s, curve 2

: . critical wave number affects the critical acceleration ampli-
fyc,1 IS decreasing.

tude. This influence is different at low and high frequencies

pendence ofa.(f) is not smooth and the dependence ofdue to the_following reason. Thg decreasé<<:ofe§ults irj(_i)
k.(f) is discontinuougsee the insets in Fig.)3Bicritical the reduction of the effective fluid depth which intensifies

points are those points in the parameter space where the athe stress in the bottom layer afié) the weakening of the
solute minima ofa(k) is equal to the local minima of two dissipation in the bulk fluid. Therefore in the case of the first
neighboring tongues. In the zero field case, for instance, sudiiamping regime the viscous dissipation is intensified,
an overlap happens between the first subharmonic tongughereas in the case of the second regime it is reduced by the
(¢=1) and the first harmonic tonguef£2) at f,.;  magnetic field.

=1.86 Hz. For frequencies belofy, ;, the tongue of sec- In the low frequencyregion d=Kk.h=1), the first damp-
ond order gives the critical acceleration until the next bicriti-ing regime occurs independent of the magnetic field. There-
cal point atf,. ,~1.55 Hz. Belowf , the tongue of third fore the critical acceleration amplitude increases with the
order gives there the lowest threshold until the third bicriticalgrowth of the effective field.

point and so on. Thus with decreasing frequency subsequent At high frequencieshe dependence of the critical accel-
transitions from a tongue of the ordérto a tongue of the eration amplitude on the effective field is more intricate. In
order{+1 occur. Fig. 5@ the dependence &.(B¢s) is presented for a fre-

It is seen in the inset in Fig.(B) that the magnetic field quencyf=100 Hz. It is seen that for an infinitely deep fluid
shifts the bicritical points. If the fluid viscosity is loas in  the critical acceleration amplitude decreases monotonicly
Fig. 3), then the magnetic field decreases the frequencies afith the increase of the magnetic field. In the case of a finite
the transitions. For higher viscosities, e.g510 % m?/s,  depth of the layer, there are two different forms of the de-
the bicritical points are shifted towards higher frequenciespendence of; on B.s. In the case oh=1.14 mm a mini-
This is exemplarily shown in Fig. 4 for the frequency of the mum in the critical acceleration amplitude is observed. It
first bicritical point, fy, 1, for a high-viscous fluidcurve 1) implies that a moderate magnetic field lowers the threshold
and a low-viscous fluidcurve 2. For frequencies aboude-  value of the acceleration amplitude whereas a strong mag-
low) the curves the response of the system is subharmonigetic field stabilizes the surface, i.e., the critical acceleration
(harmonig. Thus for a high-viscous fluid and an excitation amplitude is increasing. With the decrease of the layer depth
frequency off =10 Hz at zero applied field a subharmonic [from curve D to A in Fig. 5a)], the observed minimum
response ! = w/2) is expected, whereas Bts=B.g a har-  shifts to the lower fields and becomes less pronounced. At
monic response(l=w) precedes. For ordinargnonmag- h=<1.13 mm the critical acceleration amplitude monotonicly
netic) fluids bicritical points were also found in the case of increases with the effective field.
both low-viscous fluid$2] and high-viscous fluid§13]. To explain these qualitative changes in the dependence of

A feature of the dependence af(f) [Fig. 3@)] is the  a.(Bey) it is useful to consided(B.g) [see Fig. Bb)]. The
appearance of a pronounced minimum for all tested fields. Tanalysis shows that in the regiai® 1 (the second damping
explain this behavior, one has to recall that viscous dampingegime the decrease of the critical wave number caused by
is the reason for the finiténonzerg value of the critical the magnetic field leads to a weakening of the viscous damp-
acceleration amplitude. The damping occurs due to théng. Therefore the critical acceleration amplitude is decreas-
stresses in the bottom layer and in the bulk fluid. The dimening with the increase of the field until the effective deftbf
sionless quantitg=k:h can be used to determine which part the fluid becomes of the order of unity. A further decrease of
of the damping is predominant. For a shallow fluid layer thed caused by the magnetic field increases the viscous damping
inequalityd=<1 holds and therefore the damping in the bot-in the bottom layer and consequently the critical acceleration
tom layer is predominantfirst regime. For a deep layer, amplitude. Thus, the transition from the second damping re-
where the relatiord>1 is fulfilled, the damping in the bot- gime to the first one results in the nonmonotonic dependence
tom layer is of no importance and the damping in the bulkof a.(B.x) [Fig. 5@]. The effective field, where the transi-
fluid is predominantsecond regime tion occurs, is decreasing with decreasénoénd in the case
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45 , . y TABLE |. Sets of the parameters for data plotted in Fig. 6.
A @ | Set v (m¥s) f(H2) Be(B.) h(mm)  Symbol
o 1 5.88<10 ° 5 1 05-600  +
EBT B 1 2 103 10 0 5-100 V
Sy c 3 104 100 0 1-100 O
\" 4 58810° 100 0-3 2 A
D 5 5.88<10°° 1-100 1 5 <
55 : —= 6 10°  5-100 1 2 >
6 3
BB, 7 10°°-10° 48 1 2 o
8 " " " tropic driving and therefore Faraday waves along an arbitrary
(b) direction can be excited. As a consequence, different patterns
6 I can be generatedrolls along an arbitrary direction or a
rhombic pattern as discussed abpve
~ 4 In the case oflow viscositythe obtained results for the

critical acceleration amplitude are in the very good agree-
ment with an approximation suggested by IMuet al.[Eq.

(9) in [2] and Eq.(4.1) in [24]]. It should be noted that the
influence of anormal magnetic field(studied in[24,2€]) and

a horizontalfield (studied in the present papesn Faraday

B /B waves are different. The normal magnetic field increases the

eff "R

critical wave number of the Faraday wa\@$], whereas the

FIG. 5. Critical acceleration amplitude, (a) and the dimen- horizontal magnetic field decreases the wave number. Thus,
sionless deptll=k.h of the fluid (b) versus the induction of mag- the sensitivity of ferrofluids to magnetic fields allows one
netic field forf=100 Hz. The layer depth is 1 mfeurveA), 1.5  both to increase and to decrease the critical wave number. In
mm (B), 2 mm (C), 5 mm (D), and the curvéE) is obtained for an  this way the relative importance of the stress in the bottom
infinitely deep layer. The fluid parameters are those of Fig. 3. layer and the dissipation in the bulk fluid can be changed.

Therefore magnetic fields are a convenient way to control the

of a very shallow fluid(here, h<1.13 mm), the second Stability of the surface.

damping regime is not observed at all.

The Faraday instability on nonmagnetic fluids witlgh

The nonmonotonic dependencea{By) allows one to viscosityhas been investigated it4]. The authors suggest a
select the type of the linearly most unstable patt@mrre- ~ Scale for the acceleration based on an analogy between the
sponding to a minimagd,) by applying a horizontal magnetic Faraday |nstab|I|.ty anq a periodically driven version of th_e
field. When the inductio, of the applied field is smaller Rayleigh-Taylor instability. They observe a data collapse in
than BZ; [ac(Beg) is minimal atB%,] Faraday waves with the range of the_ d|SS|pa_1t|o_n pfirametéﬂ() from 0.1_to 0.3,
k||B, are favorable. In this cas.s= B, [see Eq(3.8)], i.e., whereé=\v/w is the dissipative length scale. In this param-
Bert has a maximal possible value at givBg. It implies that ~ €ter range our results are in a good agreement with the sug-
the first unstable pattern are rolls perpendicular to the magdested scaling law. However, at low frequencies the scaling

netic field. If B,=BY; then the angle between the favorable
wave vector of perturbation and the applied magnetic field
satisfies the relation cas=+B};/B,. Thus, forBy>By;# 0

rolls with an anglet+ # or an angle— # or a rhombic pattern

as a superposition of both is most probable. If the layer depth
is small enougiB}; becomes zerfsee curveA in Fig. 5a)].
That is equivalent to co&=0, i.e., rolls parallel to the mag-
netic field are expected.

The parametrical generation of surface waves by a hori-
zontal alternating magnetic field was observedl2,28. In
these studies the driving force is the magnetic field and it is
anisotropic. Only perturbations with a wave vector parallel to
the field can be unstable in the linear approximation. There-

1000

100 ¢

a /(vk Q)

fore the first unstable pattern observed in the experiments giG, 6. Scaled critical acceleration amplitude versus the dimen-
were always rolls perpendicular to the field.[R8] a super-  sjonless depth of the layer. Data are plotted for seven different sets
critical transition was observed from rolls to a rectangularwith various combinations of the fluid viscosity, excitation fre-
pattern. This transition is caused by nonlinear interactions ofjuency, effective field, and the layer thickngsee Table)l The

the different modes. In the present study there is no anisaemaining parameters are those of Fig. 3.
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behavior suggested ir14] strongly underestimates,. Ad-  >1 an estimationa. ..~7 approximates the exact results

ditionally, the remaining parameters neglected[14] be-  with a maximal error of about 12%. It is worth noting that

come essential &:h=<1. Therefore, the scaling propagated the dependencies of the critical acceleration amplitude on the

in [14] is of limited use for ferrofluids in magnetic fields.  surface tension and the fluid density follow the same com-
The aim now is to reveal acaling lawfor the threshold mon behavior as shown in Fig. 6.

values of the Faraday instability. The behavior of the critical

acceleration amplitude as a function of the parameters of the V. CONCLUSION

system s Qetermined by the dim_ensionless depthi the The linear analysis of the Faraday instability on a viscous
fluid (see Figs. 3 and)5Therefore, itis natural to look for a o ofid subjected to a horizontal magnetic field has been
scaling law of the forma,=a.(d), wherea is the scaled performed. A horizontally unbounded ferrofluid layer of a
acceleration. Af— e the required function should approach finjte depth has been considered. The dependencies of the
an asymptotic value. Thus, the appropriate scale for the agyitical acceleration amplitude, and the critical wave vec-
celeration amplitude is the vala .. of the critical accelera- tor on the excitation frequendyand the inductiorB.; of the
tion for an infinitely deep fluid. The quantit:Q v is a rea-  magnetic field have been obtained for different depths of the
sonable estimation foa, .. [14]. Introducing this scale for |ayer in a wide range of fluid viscosities. The regions have
the acceleration amplitude.=a./(vQk.), it is possible to  been found, where the viscous stress either in the bottom
map all the above presented dependencies in a single plot &syer (the first regime or in the bulk fluid (second regime
it has been done in Fig. 6. are predominant. A transition from the second damping re-
Figure 6 presents the dimensionless amplitude as a fungime to the first one can be caused by decreasing the excita-
tion of the effective deptld=k:h of the fluid. The latter can tion frequency or by applying a horizontal magnetic field.
be varied by means of changing the physical depth of thdhe transition results in the nonmonotonic dependencies of
layer (pluses, down triangles, and squares in Figvarying  a.(f) anda.(Bes). It is shown that one can select the first
the applied magnetic fieldup triangle$, excitation fre- unstable pattern of Faraday waves by the appropriate choice
quency(left and right triangles and the viscosity of the fluid of the depth of the ferrofluid and the induction of the mag-
(diamonds. It is seen that for a wide range of parameters thenetic field. A scaling law is suggested, which describes the
dependencies o&, related to different fluids and varying Pehavior of the system in a wide range of the system param-
parameters are in a rather good agreement with each oth&ters.
The only deviation from the common behavior appears for a
low frequency(plusses at intermediatel. Ford up to unity
the dimensionless acceleration amplitude can be reasonable This work was supported by the Deutsche Forschungsge-
approximated bya.~21d 2% (solid line in Fig. 6. Ford  meinschaft under Grant No. LA 1182/2.
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